Greedy mixture learning for multiple motif discovery in biological sequences
نویسندگان
چکیده
منابع مشابه
Greedy mixture learning for multiple motif discovery in biological sequences
MOTIVATION This paper studies the problem of discovering subsequences, known as motifs, that are common to a given collection of related biosequences, by proposing a greedy algorithm for learning a mixture of motifs model through likelihood maximization. The approach adds sequentially a new motif to a mixture model by performing a combined scheme of global and local search for appropriately ini...
متن کاملDevelopment of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملSublinear Time Motif Discovery from Multiple Sequences
In this paper, a natural probabilistic model for motif discovery has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet, Σ. A motif G = g1g2 . . . gm is a string of m characters. In each background sequence is implanted a probabilistically-ge...
متن کاملGenetic Algorithm Based Probabilistic Motif Discovery in Unaligned Biological Sequences
Finding motif in biosequences is the most important primitive operation in computational biology. There are many computational requirements for a motif discovery algorithm such as computer memory space requirement and computational complexity. To overcome the complexity of motif discovery, we propose an alternative solution integrating genetic algorithm and Fuzzy Art machine learning approaches...
متن کاملEfficient Algorithms for Model-Based Motif Discovery from Multiple Sequences
We study a natural probabilistic model for motif discovery that has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet Σ. A motif G = g1g2 . . . gm is a string of m characters. Each background sequence is implanted a randomly generated approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2003
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btg037